Compliant Motion Systems – Draft Syllabus

Topics by week:

Week	Topic
1	Introduction to Compliant Motion Systems
2	Mathematical Tools to describe nonlinear behavior
3	Concepts of Stability, Introduction to Lyapunov Theory
4	Advanced Stability Theory
5	Concept of Non-Collocation, and Internal Dynamics of Compliant Motion Systems
6	Flexibility through Lumped Elements
	- Linear Cases
	- Feedback Linearization for Non-Linear Cases
7	Command Shaping Techniques
8	Midterm Exam
9	Flexibility through Distributed Elements
	- Modelling, Modal Analysis, examples of command shaping
	- Case: Single Flexible Link
10	Adaptive Modelling Approaches
	- Case: Reduced Order Modelling for Distributed Flexibility
11	Backstepping Control
	- Case: Compressible transmission
12	Variable Compliance Actuators
	- Case: Compliance in Human Locomotion
13	Soft Actuation
	- Case: Pneumatic Manipulators
14	Further Case Studies
	- Series Elastic Actuation
	- Space Robotics

Recommended Materials:

- Applied Nonlinear Control, Jean-Jacques E. Slotine & Weiping Li
- Handbook of Robotics, 3rd Ed., Ch. 13, Alessandro De Luca, Wayne Book
- Various research articles/materials

Assessment Method:

Midterm Exam: 30 %Final Exam: 30 %Assignments: 40 %

Notes:

- Final Exam will be take-home, and students will be expected to make a presentation about their solutions on the exam date.
- There will be six assignments in total.